Compact Homogeneous Locally Conformally Kaehler Manifolds
書誌事項
- タイトル別名
-
- COMPACT HOMOGENEOUS LOCALLY CONFORMALLY KÄHLER MANIFOLDS
この論文をさがす
説明
In this paper we show as main results two structure theorems of a compact homogeneous locally conformally Kaehler (or shortly l.c.K.) manifold, a holomorphic structure theorem asserting that it has a structure of holomorphic principal fiber bundle over a flag manifold with fiber a 1-dimensional complex torus, and a metric structure theorem asserting that it is necessarily of Vaisman type. We also discuss and determine l.c.K. reductive Lie groups and compact locally homogeneous l.c.K. manifolds of reductive Lie groups.
21 pages. This paper is based on the first part of the original paper "Locally Conformally Kaehler Structures on Homogeneous Spaces" (math.arXiv:1101.3693) with partial revision, containing the main theorems
収録刊行物
-
- Osaka Journal of Mathematics
-
Osaka Journal of Mathematics 53 (3), 683-703, 2016-07
Osaka University and Osaka City University, Departments of Mathematics
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390009224810605440
-
- NII論文ID
- 120005986284
-
- NII書誌ID
- AA00765910
-
- HANDLE
- 11094/58872
-
- ISSN
- 00306126
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- JaLC
- IRDB
- CiNii Articles
- OpenAIRE