THE MODULI SPACE OF POINTS IN THE BOUNDARY OF QUATERNIONIC HYPERBOLIC SPACE
この論文をさがす
説明
Let F_1(n,m) be the PSp(n, 1)-configuration space of ordered m-tuple of pairwise distinct points in the boundary of quaternionic hyperbolic n-space ∂𝗛^n_H , i.e., the m-tuple of pairwise distinct points in ∂𝗛^n_H up to the diagonal action of PSp(n, 1). In terms of Cartan’s angular invariant and cross-ratio invariants, the moduli space of F1(n,m) is described by using Moore’s determinant. We show that the moduli space of F_1(n,m) is a real 2m^2 − 6m + 5 − Σ^<m−n−1> _<i=1> ( ^<m−2>_<n−1+i>) dimensional subset of a algebraic variety with the same real dimension when m > n+1.
収録刊行物
-
- Osaka Journal of Mathematics
-
Osaka Journal of Mathematics 57 (4), 827-846, 2020-10
Osaka University and Osaka City University, Departments of Mathematics
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390009224818704768
-
- NII論文ID
- 120006891389
-
- NII書誌ID
- AA00765910
-
- HANDLE
- 11094/77233
-
- ISSN
- 00306126
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- JaLC
- IRDB
- CiNii Articles
- OpenAIRE