URYSOHN'S LEMMA IN SCHRÖDER CATEGORIES

  • 河原 康雄
    九州大学システム情報科学研究院情報学部門

この論文をさがす

説明

A Schröder category extends the category of all binary relations among sets, that is, it realises a relatively huge part of predicate logic. On the other hand Urysohn's lemma asserts that every pair of disjoint closed subsets in a $T_4$ topological space can be separated by a continuous function into the reals. Usually the lemma is demonstrated with calculus of elementary set theory. However the structure of this lemma is very interesting from a view point of lattice theory and relational method. This paper gives a relational proof for Urysohn's lemma within Schröder categories.

収録刊行物

詳細情報 詳細情報について

  • CRID
    1390009224849127040
  • NII論文ID
    120001944233
  • NII書誌ID
    AA10634475
  • DOI
    10.5109/16775
  • ISSN
    2435743X
    0286522X
  • HANDLE
    2324/16775
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • JaLC
    • IRDB
    • Crossref
    • CiNii Articles
    • OpenAIRE
  • 抄録ライセンスフラグ
    使用可

問題の指摘

ページトップへ