機械学習を用いたフォトンカウンティング型X線CTにおけるスペクトル歪み補正の基礎的研究
書誌事項
- タイトル別名
-
- FUNDAMENTAL STUDY OF SPECTRAL DISTORTIONS CORRECTION USING MACHINE LEARNING TECHNIQUES IN PHOTON-COUNTING X-RAY CT
この論文をさがす
説明
Owing to the spectral capabilities, a photon counting CT system has generated considerable recent research interest. It can distinguish materials of target objects and enables us to perform a K-edge imaging. However, the photon-counting CT has a critical issue; spectral distortion mainly due to a pulse-pileup effect. In this work, we focus on the capability of nonlinear regression of machine learning and propose a neural network-based method to correct the spectral distortion. The aim of this study is to develop a neural-network based correction method of spectral distortion due to pulse-pileup effects for a photon-counting CT. We investigated the feasibility of our method with a simulation.
収録刊行物
-
- 法政大学大学院紀要. 理工学・工学研究科編
-
法政大学大学院紀要. 理工学・工学研究科編 62 1-4, 2021-03-24
法政大学大学院理工学・工学研究科
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390009225532480128
-
- NII論文ID
- 120007119605
-
- NII書誌ID
- AA12677220
-
- HANDLE
- 10114/00023970
-
- ISSN
- 21879923
-
- 本文言語コード
- ja
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- JaLC
- IRDB
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用可