DISCRETENESS OF HYPERBOLIC ISOMETRIES BY TEST MAPS
この論文をさがす
説明
Let F = R, C or the Hamilton’s quaternions H. Let H^n_F denote the n-dimensional F-hyperbolic space. Let U(n,1;F) be the linear group that acts by the isometries of H^n_F. A subgroup G of U(n,1;F) is called Zariski dense if it does not fix a point on H^n_F ∪ ∂H^n_F and neither it preserves a totally geodesic subspace of H^n_F. We prove that a Zariski dense subgroup G of U(n,1;F) is discrete if for every loxodromic element g ∈ G, the two generator subgroup <f,g> is discrete, where f ∈ U(n,1;F) is a test map not necessarily from G.
収録刊行物
-
- Osaka Journal of Mathematics
-
Osaka Journal of Mathematics 58 (3), 697-710, 2021-07
Osaka University and Osaka City University, Departments of Mathematics
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390009225548361984
-
- NII論文ID
- 120007140324
-
- NII書誌ID
- AA00765910
-
- DOI
- 10.18910/83208
-
- HANDLE
- 11094/83208
-
- ISSN
- 00306126
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- JaLC
- IRDB
- CiNii Articles