Tangled Dislocation Structures inside Dislocation Channels of Rapid-Cooled and Tensile-Deformed Aluminum Single Crystals

この論文をさがす

説明

Tangled dislocation structures inside the dislocation channels of rapid-cooled and tensile deformed aluminum single crystals were investigated by using BF-STEM. Inside the dislocation channels, arrays of the prismatic dislocation loops belonging to the primary slip system, i.e., (1 1 1)[1 0 1], were mainly formed. Dislocations of the primary coplanar slip systems such as (1 1 1)[0 1 1] and (1 1 1)[1 1 0] were activated due to the internal stresses caused by the primary dislocations pile-up inside the cleared channels. The activated primary coplanar dislocations leave the dislocation loops elongated along the edge dislocation directions behind them. Inter-dislocation-loop interactions take place especially at the arrays of the prismatic dislocation loops of the primary slip systems and produce “butterfly shape” dislocation loops. Since the “butterfly shape” dislocation loops have “sessile” junctions, they should act as “obstacles” against the following multiplications and glides of the dislocations. As the interactions proceed, the arrays are stabilized and grow as “tangles”.

収録刊行物

  • MATERIALS TRANSACTIONS

    MATERIALS TRANSACTIONS 63 (4), 562-569, 2022-04-01

    公益社団法人 日本金属学会

被引用文献 (2)*注記

もっと見る

参考文献 (32)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ