Simple Proof of the Lower Bound on the Average Distance from the Fermat-Weber Center of a Convex Body
-
- TAN Xuehou
- School of Information Science and Technology, Tokai University
説明
<p>We show that for any convex body Q in the plane, the average distance from the Fermat-Weber center of Q to the points in Q is at least Δ(Q)/6, where Δ(Q) denotes the diameter of Q. Our proof is simple and straightforward, since it needs only elementary calculations. This simplifies a previously known proof that is based on Steiner symmetrizations.</p>
収録刊行物
-
- IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
-
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E105.A (5), 853-857, 2022-05-01
一般社団法人 電子情報通信学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390010457691777280
-
- NII論文ID
- 130008116405
-
- ISSN
- 17451337
- 09168508
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可