書誌事項
- タイトル別名
-
- Domain Decomposition Methods for Magnetostatic Problems by Using Higher Order Polytopal Elements Satisfying Discrete de Rham Sequences
説明
<p>A Balancing Domain Decomposition (BDD) method is considered as the preconditioner of an iterative Domain Decomposition Method (DDM) for perturbed magnetostatic problems, where the magnetic vector potential is regarded as an unknown function approximated by the Ned´ elec curl conforming finite element. To reduce the number of the Degrees´ Of Freedom (DOF) of coarse spaces in BDD methods, Polynomial Element Methods (PEMs) are introduced. Owing to the introduction of PEMs and the result of BDD method originally proposed by Mandel, the condition number of coefficient matrices derived from the iterative DDM is evaluated. Therefore, the number of iterations of the iterative DDM can be kept even when the number of the subdomains becomes larger. Moreover, the approximate coarse space by PEMs can admit that each subdomain becomes more general polyhedron. The results in case of higher order PEMs are also shown.</p>
収録刊行物
-
- 計算力学講演会講演論文集
-
計算力学講演会講演論文集 2022.35 (0), 14-04-, 2022
一般社団法人 日本機械学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390014735381303296
-
- ISSN
- 24242799
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
- Crossref
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可