-
- TANG Yiping
- Faculty of Information Science and Electrical Engineering, Kyushu University
-
- HATANO Kohei
- Faculty of Information Science and Electrical Engineering, Kyushu University Riken AIP
-
- TAKIMOTO Eiji
- Faculty of Information Science and Electrical Engineering, Kyushu University
この論文をさがす
説明
<p>We introduce the Hexagonal Convolutional Neural Network (HCNN), a modified version of CNN that is robust against rotation. HCNN utilizes a hexagonal kernel and a multi-block structure that enjoys more degrees of rotation information sharing than standard convolution layers. Our structure is easy to use and does not affect the original tissue structure of the network. We achieve the complete rotational invariance on the recognition task of simple pattern images and demonstrate better performance on the recognition task of the rotated MNIST images, synthetic biomarker images and microscopic cell images than past methods, where the robustness to rotation matters.</p>
収録刊行物
-
- IEICE Transactions on Information and Systems
-
IEICE Transactions on Information and Systems E107.D (2), 220-228, 2024-02-01
一般社団法人 電子情報通信学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390017522235207552
-
- ISSN
- 17451361
- 09168532
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- JaLC
- Crossref
- KAKEN
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可