書誌事項
- タイトル別名
-
- Deep Learning Segmentation of Polycrystalline Superconductors with Different Compositions
説明
<p>Image analysis to identify the phases from microstructural images is an important issue for understanding the mechanism associated with the microstructures of functional polycrystalline materials. In this study, the segmentation ability of the deep learning model and the effect of data augmentation were investigated when applied to ceramic superconducting materials with different compositions than the trained materials.</p>
収録刊行物
-
- 電気学会論文誌. A
-
電気学会論文誌. A 144 (9), 373-376, 2024-09-01
一般社団法人 電気学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390019900048934400
-
- ISSN
- 13475533
- 03854205
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
- Crossref
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可