-
- Saito Hikaru
- 九州大学先導物質化学研究所
-
- Ihara Shiro
- 九州大学先導物質化学研究所
-
- Hata Satoshi
- 九州大学大学院総合理工学研究院 九州大学超顕微解析研究センター
-
- Murayama Mitsuhiro
- 九州大学先導物質化学研究所 バージニア工科大学
Bibliographic Information
- Other Title
-
- 深層学習アシスト高速STEMとトモグラフィー観察への応用
- シンソウ ガクシュウ アシスト コウソク STEM ト トモグラフィー カンサツ エ ノ オウヨウ
Search this article
Description
<p>Scanning transmission electron microscopy (STEM) is more suitable for visualizing the internal structure of thick samples compared to conventional transmission electron microscopy whose resolution is limited by the chromatic aberration of the imaging lens system, and it is often used for three-dimensional structural analysis using electron tomography. However, STEM image quality is seriously degraded by noise and artifacts, especially when pursuing rapid imaging on the order of milliseconds per frame or faster. In this paper, we report that deep learning-based denoising is effective for rapid STEM imaging, and can be applicable to rapid STEM tomography. By acquiring tilt-series images in just 5 seconds, the three-dimensional dislocation arrangement in a thick (300 nm) steel sample can be determined with sufficient accuracy. This method has enormous potential on improving in-situ or operando observation of samples in relatively thick media including liquid cells.</p>
Journal
-
- KENBIKYO
-
KENBIKYO 59 (2), 52-56, 2024-08-30
The Japanese Society of Microscopy
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1390020132249613312
-
- NII Book ID
- AA11917781
-
- ISSN
- 24342386
- 13490958
-
- NDL BIB ID
- 033716841
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- NDL Search
-
- Abstract License Flag
- Disallowed