BEST SUBSET SELECTION FOR ELIMINATING MULTICOLLINEARITY
-
- Tamura Ryuta
- Tokyo University of Agriculture and Technology
-
- Kobayashi Ken
- Fujitsu Laboratories Ltd.
-
- Takano Yuichi
- Senshu University
-
- Miyashiro Ryuhei
- Tokyo University of Agriculture and Technology
-
- Nakata Kazuhide
- Tokyo Institute of Technology
-
- Matsui Tomomi
- Tokyo Institute of Technology
この論文をさがす
説明
<p>This paper proposes a method for eliminating multicollinearity from linear regression models. Specifically, we select the best subset of explanatory variables subject to the upper bound on the condition number of the correlation matrix of selected variables. We first develop a cutting plane algorithm that, to approximate the condition number constraint, iteratively appends valid inequalities to the mixed integer quadratic optimization problem. We also devise a mixed integer semidefinite optimization formulation for best subset selection under the condition number constraint. Computational results demonstrate that our cutting plane algorithm frequently provides solutions of better quality than those obtained using local search algorithms for subset selection. Additionally, subset selection by means of our optimization formulation succeeds when the number of candidate explanatory variables is small.</p>
収録刊行物
-
- 日本オペレーションズ・リサーチ学会論文誌
-
日本オペレーションズ・リサーチ学会論文誌 60 (3), 321-336, 2017
公益社団法人 日本オペレーションズ・リサーチ学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390282679089782912
-
- NII論文ID
- 130005874223
-
- NII書誌ID
- AA00703935
-
- ISSN
- 21888299
- 04534514
-
- NDL書誌ID
- 028400755
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可