Laser acceleration and its future

  • TAJIMA Toshiki
    Faculty of Physics, Ludwig-Maximilian University Blaise Pascal Chair, Ecole Normale Superieure of France

この論文をさがす

抄録

Laser acceleration is based on the concept to marshal collective fields that may be induced by laser. In order to exceed the material breakdown field by a large factor, we employ the broken-down matter of plasma. While the generated wakefields resemble with the fields in conventional accelerators in their structure (at least qualitatively), it is their extreme accelerating fields that distinguish the laser wakefield from others, amounting to tiny emittance and compact accelerator. The current research largely falls on how to master the control of acceleration process in spatial and temporal scales several orders of magnitude smaller than the conventional method. The efforts over the last several years have come to a fruition of generating good beam properties with GeV energies on a table top, leading to many applications, such as ultrafast radiolysis, intraoperative radiation therapy, injection to X-ray free electron laser, and a candidate for future high energy accelerators.<br><br>(Communicated by Toshimitsu YAMAZAKI, M.J.A.)

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (39)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ