Radical Addition-Initiated Domino Reactions of Conjugated Oxime Ethers

この論文をさがす

抄録

The application of conjugated oxime ethers to the synthesis of complex chemical scaffolds using domino radical reactions has been described in detail. The triethylborane-mediated hydroxysulfenylation reaction allows for the regioselective construction of a carbon–sulfur bond and a carbon–oxygen bond in a single operation for the formation of β-hydroxy sulfides. This reaction proceeds via a radical pathway involving regioselective thiyl addition and the subsequent trapping of the resulting α-imino radical with O2, where the imino group enhances the stability of the intermediate radical. Hydroxyalkylation reactions that occur via a carbon radical addition reaction followed by the hydroxylation of the resulting N-borylenamine with O2 have also been developed. We investigated sequential radical addition aldol-type reactions in detail to explore the novel domino reactions that occur via the generation of N-borylenamine. The radical reaction of a conjugated oxime ether with triethylborane in the presence of an aldehyde affords γ-butyrolactone via sequential processes including ethyl radical addition, the generation of N-borylenamine, an aldol-type reaction with an aldehyde, and a lactonization reaction. A novel domino reaction has also been developed involving the [3,3]-sigmatropic rearrangement of N-boryl-N-phenoxyenamine. The triethylborane-mediated domino reactions of O-phenyl-conjugated oxime ethers afforded the corresponding benzofuro[2,3-b]pyrrol-2-ones via a radical addition/[3,3]-sigmatropic rearrangement/cyclization/lactamization cascade.

収録刊行物

被引用文献 (2)*注記

もっと見る

参考文献 (13)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ