-
- Bekki Naoaki
- Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712, USA
この論文をさがす
説明
In order to show that some periodic orbits of a fifth-order system of magnetoconvection are embedded in a three-dimensional subspace, main projections onto a three-dimensional subspace from the five-dimensional space are numerically investigated. It is found that the periodic orbits are topologically equivalent to a (p, q)-torus knot, where its curve closes after rotating q times in the meridional direction and p times in the longitudinal direction. In terms of a braid word for the torus knot, a (2, 7)-torus knot is finally obtained in the fifth-order system through the complicated bifurcations under parameter variation. This suggests that topological invariants embedded in a three-manifold can be extracted from realistic dissipative higher dimensional dynamical systems.
収録刊行物
-
- Journal of the Physical Society of Japan
-
Journal of the Physical Society of Japan 69 (2), 295-298, 2000
一般社団法人 日本物理学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390282679158102016
-
- NII論文ID
- 110001971351
- 210000102513
- 130004537411
-
- NII書誌ID
- AA00704814
-
- BIBCODE
- 2000JPSJ...69..295B
-
- ISSN
- 13474073
- 00319015
-
- MRID
- 1769543
-
- NDL書誌ID
- 5289887
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDL
- Crossref
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可