Solutions of Non-Linear Differential Equation \(\dfrac{\partial u}{\partial t}+\dfrac{45}{2} \delta ^{2}u^{2} \dfrac{\partial u}{\partial x}-\dfrac{\partial ^{5}u}{\partial x^{5}}=0\)
-
- Yamamoto Yosinori
- Institute of Precision Mechanics, Faculty of Engineering, Hokkaido University
-
- Takizawa Éi Iti
- Institute of Precision Mechanics, Faculty of Engineering, Hokkaido University
書誌事項
- タイトル別名
-
- Solutions of Non-Linear Differential Equation (<U>Remark: Graphics omitted.</U>)
この論文をさがす
説明
The non-linear partial differential equation:<BR>ut+(45⁄2)δ2u2 ux−uxxxxx=0,<BR>has solutions expressed by elliptic functions. A solitary wave solution is also found to be u=±\sqrtκ⁄3δ[3 \sech2 (A(ξ−ξ0))−1], with ξ=x−(9δκt⁄2), A=\sqrtδ(e1−e3)⁄2, e1=−2e3=2\sqrtκ⁄(3δ), and any constants ξ0 and κ.
収録刊行物
-
- Journal of the Physical Society of Japan
-
Journal of the Physical Society of Japan 50 (4), 1055-1056, 1981
一般社団法人 日本物理学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390282679160904192
-
- NII論文ID
- 210000089266
- 130003896959
-
- BIBCODE
- 1981JPSJ...50.1055Y
-
- ISSN
- 13474073
- 00319015
-
- MRID
- 668788
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可