Improvement of Forgeability of a Commercial AZ31B Magnesium Alloy in Cold Backward Extrusion with Counter Pressure

  • Matsumoto Ryo
    Graduate School of Engineering Science, Osaka University
  • Kubo Tomoo
    Graduate School of Engineering Science, Osaka University
  • Osakada Kozo
    Graduate School of Engineering Science, Osaka University

この論文をさがす

抄録

In order to improve the forgeability of a commercial wrought AZ31B magnesium alloy (Mg-3%Al-1%Zn) at room temperature, backward extrusion is carried out with applying counter pressure. A counter pressure is applied from a die exit of backward extrusion. By applying counter pressures of 100–200 MPa during backward extrusion, the critical punch stroke for fracturing is improved by 20% because the ductility increases under a high pressure. To predict the occurrence of fracturing of magnesium alloys, the distributions of the stress, strain and temperature during forging are calculated by the finite element simulation because the existing fracture criteria are not adequate to predict the occurrence of fracturing of magnesium alloys in forging. The mechanism of fracturing is discussed on the basis of plastic deformation, and a fracture criterion of magnesium alloy in cold forging is suggested. The newly proposed criterion provides much better results than the existing criteria.

収録刊行物

被引用文献 (4)*注記

もっと見る

参考文献 (18)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ