Finding New Varieties of Malware with the Classification of Network Behavior
-
- HATADA Mitsuhiro
- Waseda University NTT Communications Corporation
-
- MORI Tatsuya
- Waseda University
この論文をさがす
説明
<p>An enormous number of malware samples pose a major threat to our networked society. Antivirus software and intrusion detection systems are widely implemented on the hosts and networks as fundamental countermeasures. However, they may fail to detect evasive malware. Thus, setting a high priority for new varieties of malware is necessary to conduct in-depth analyses and take preventive measures. In this paper, we present a traffic model for malware that can classify network behaviors of malware and identify new varieties of malware. Our model comprises malware-specific features and general traffic features that are extracted from packet traces obtained from a dynamic analysis of the malware. We apply a clustering analysis to generate a classifier and evaluate our proposed model using large-scale live malware samples. The results of our experiment demonstrate the effectiveness of our model in finding new varieties of malware.</p>
収録刊行物
-
- IEICE Transactions on Information and Systems
-
IEICE Transactions on Information and Systems E100.D (8), 1691-1702, 2017
一般社団法人 電子情報通信学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390282679354054656
-
- NII論文ID
- 130005876003
-
- ISSN
- 17451361
- 09168532
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可