Development of a Neural Network Simulator for Structure-activity Correlation of Molecules: Neco. (7). Hydrophobic Parameter (logP) Prediction of Perillartine Derivatives.
-
- TAKAHASHI Risa
- Department of Human Culture and Sciences, Graduate School of Ochanomizu University
-
- HOSOYA Haruo
- Faculty of Sciences, Ochanomizu University
-
- FUKUDA Tomoko
- National Institute for Advanced Industrial Science and Technology
-
- NAGASHIMA Umpei
- National Institute for Advanced Industrial Science and Technology
Bibliographic Information
- Other Title
-
- 分子の構造活性相関解析のためのニューラルネットワークシミュレータ Neco (NEural network simulator for structure‐activity COrrelation of molecules)の開発 (7) ペリラルチン類の疎水性パラメータlogPの予測
- 分子の構造活性相関解析のためのニューラルネットワークシミュレータ:Neco(NEural network simulator for structure-activity COrrelation of molecules)の開発(7)ペリラルチン類の疎水性パラメータlogPの予測
- ブンシ ノ コウゾウ カッセイ ソウカン カイセキ ノ タメ ノ ニューラル ネットワーク シミュレータ Neco NEural network simulator for structure activity COrrelation of molecules ノ カイハツ 7 ペリラルチンルイ ノ ソスイセイ パラメータ logP ノ ヨソク
Search this article
Description
We developed a neural network simulator for structure-activity correlation of molecules: Neco. A self-organized network model for high-speed learning was included in Neco, a perceptron type with three layers. In the hidden layer the neurons are self-organized by using Mahalanobis generalized distance.<br> This report proposes an improved training algorithm to the network. A self-organizing module decides the number of neurons in the hidden layer, at first. Then, a neuron in the hidden layer has two informations which describe a characteristic of the neuron. In this way, the network can evaluate stochastic characteristics from input data better.<br> Using this simulator, the hydrophobic parameter, logP, of perillartine derivatives was predicted. We used for inputs a set of six parameters: five STERIMOL (L, Wl, Wu, Wr, and Wd) and the sweet/bitter activity. The 22 sampled data are used for training. Our neural network can accurately predict hydrophobic parameter, logP. Compared with a normal perceptron network, the learning ability of our network is somewhat higher and its convergence speed is greatly much larger.<br> This simulator doesn't depend on the machine environment because it codes by the Java programming language.
Journal
-
- Journal of Chemical Software
-
Journal of Chemical Software 8 (1), 17-26, 2002
SOCIETY OF COMPUTER CHEMISTRY, JAPAN
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1390282679360211328
-
- NII Article ID
- 10022553573
-
- NII Book ID
- AN10470405
-
- COI
- 1:CAS:528:DC%2BD38Xms1Clsbo%3D
-
- ISSN
- 18838359
- 09180761
-
- NDL BIB ID
- 6369690
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- NDL Search
- Crossref
- CiNii Articles
-
- Abstract License Flag
- Disallowed