Development of a Neural Network Simulator for Structure-Activity Correlation of Molecules: Neco. (6). Estimation of Mechanical Properties of Cr-Mo Steel, Ni Steel, Ni-Cr Steel and Ni-Cr-Mo Steel.

  • FUKUDA Tomoko
    Department of Life Arts, Faculty of Home Economics, Japan Women's University Bestsystems Co. Ltd.
  • TAJIMA Sumie
    Department of Human Culture and Sciences, Graduate School of Ochanomizu University
  • MATSUMOTO Takatoshi
    National Institute of Materials and Chemical Research
  • NAGASHIMA Umpei
    National Institute for Advanced Interdisciplinary Research
  • HOSOYA Haruo
    Department of Human Culture and Sciences, Graduate School of Ochanomizu University
  • AOYAMA Tomoo
    Faculty of Technology, Miyazaki University

Bibliographic Information

Other Title
  • 分子の構造活性相関解析のためのニューラルネットワークシミュレータ  Neco(NEural network simulator for structure‐activity COrrelation of molecules)の開発 (6)  機械構造用Cr‐Mo鋼,Ni鋼,Ni‐Cr鋼およびNi‐Cr‐Mo鋼の力学的性質の推定
  • 分子の構造活性相関解析のためのニューラルネットワークシミュレータ:Neco(Neural network simulator for structure-activity Correlation of molecules)の開発(6)機械構造用Cr-Mo鋼,Ni鋼,Ni-Cr鋼およびNi-Cr-Mo鋼の力学的性質の推定
  • ブンシ ノ コウゾウ カッセイ ソウカン カイセキ ノ タメ ノ ニューラル ネットワーク シミュレータ Neco Neural network simulator for structure activity Correlation of molecules ノ カイハツ 6 キカイ コウゾウヨウ Cr Mo コウ Ni コウ Ni Cr コウ オヨビ Ni Cr Mo コウ ノ リキガクテキ セイシツ ノ スイテイ

Search this article

Description

In order to estimate mechanical properties of high tension steels for machine tools: Cr-Mo steel, Ni steel, Ni-Cr steel and Ni-Cr-Mo steel, we applied property prediction by a perceptron type neural network. It was found that six mechanical properties: yield point, tensile strength, diaphragm, impulsive force and hardness are predictable within experimental error, almost 20%, using only the amount of C, Mn, Ni, Cr and Mo in the steels.

Journal

Citations (2)*help

See more

References(13)*help

See more

Details 詳細情報について

Report a problem

Back to top