Ataxia telangiectasia and rad3 related (ATR)-promyelocytic leukemia protein (PML) pathway of the DNA damage response in the brain of rats administered arsenic trioxide

DOI DOI Web Site Web Site Web Site View 2 Remaining Hide 1 Citations 49 References Open Access
  • Watanabe Ryo
    Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
  • Unuma Kana
    Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
  • Noritake Kanako
    Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
  • Funakoshi Takeshi
    Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
  • Aki Toshihiko
    Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
  • Uemura Koichi
    Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan

Bibliographic Information

Other Title
  • Restoration of YAP activation rescues HL-1 cardiomyocytes from apoptotic death by ethanol

Search this article

Abstract

<p> To examine the in vivo responses of promyelocytic leukemia protein (PML) to arsenic, rats (male, 6 weeks old, Sprague Dawley) were administered a single intraperitoneal dose of 5 mg/kg arsenic trioxide (ATO). The protein was examined in the heart, lung, liver, and brain 6 and 48 hours after administration: a significant response of PML was observed in the brain. Oxidative DNA modification was also observed in the brain as revealed by increased immunoreactivity to anti-8-hydroxy-2’-deoxyguanosine (8-OHdG) antibody. In contrast, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) stain reactivity was only slightly increased, suggesting oxidative cellular stress without apoptotic cell death in the ATO-administered rat brain. Among the DNA damage response pathways, the ATR-Chk1 axis was activated, while the ATM-Chk2 axis was not, implying that the PML response is associated with activation of the ATR-Chk1 DNA repair pathway in the brain.</p>

Journal

Citations (1)*help

See more

References(49)*help

See more

Related Projects

See more

Report a problem

Back to top