The Discrete-time Quaternionic Quantum Walk and the Second Weighted Zeta Function on a Graph
-
- KONNO Norio
- Department of Applied Mathematics, Faculty of Engineering, Yokohama National University
-
- MITSUHASHI Hideo
- Faculty of Education, Utsunomiya University
-
- SATO Iwao
- Oyama National College of Technology
説明
We define the quaternionic quantum walk on a finite graph and investigate its properties. This walk can be considered as a natural quaternionic extension of the Grover walk on a graph. We explain the way to obtain all the right eigenvalues of a quaternionic matrix and a notable property derived from the unitarity condition for the quaternionic quantum walk. Our main results determine all the right eigenvalues of the quaternionic quantum walk by using complex eigenvalues of the quaternionic weighted matrix which is easily derivable from the walk. Since our derivation is owing to a quaternionic generalization of the determinant expression of the second weighted zeta function, we explain the second weighted zeta function and the relationship between the walk and the second weighted zeta function.
収録刊行物
-
- Interdisciplinary Information Sciences
-
Interdisciplinary Information Sciences 23 (1), 9-17, 2017
東北大学大学院情報科学研究科ジャーナル編集委員会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390282679413296768
-
- NII論文ID
- 120006237475
- 130005519552
-
- ISSN
- 13476157
- 13409050
-
- HANDLE
- 10097/00120626
-
- 本文言語コード
- en
-
- 資料種別
- departmental bulletin paper
-
- データソース種別
-
- JaLC
- IRDB
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可