- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Learning under Non-Stationarity: Covariate Shift Adaptation, Class-Balance Change Adaptation, and Change Detection
-
- Sugiyama Masashi
- 東京工業大学
-
- Yamada Makoto
- Yahoo! Labs
-
- Liu Song
- 東京工業大学
Bibliographic Information
- Other Title
-
- 非定常環境下での学習:共変量シフト適応,クラスバランス変化適応,変化検知
- ヒテイジョウ カンキョウ カ デ ノ ガクシュウ : キョウ ヘンリョウ シフト テキオウ,クラスバランス ヘンカ テキオウ,ヘンカ ケンチ
Search this article
Description
In standard supervised learning algorithms training and test data are assumed to follow the same probability distribution. However, because of a sample selection bias or non-stationarity of the environment, this important assumption is often violated in practice, which causes a significant estimation bias. In this article, we review semi-supervised adaptation techniques for coping with such distribution changes. We focus on two scenarios of such distribution change: the covariate shift (input distributions change but the input-output dependency does not change) and the class-balance change in classification (class-prior probabilities change but class-wise input distributions remain unchanged). We also show methods of change detection in probability distributions.
Journal
-
- Journal of the Japan Statistical Society, Japanese Issue
-
Journal of the Japan Statistical Society, Japanese Issue 44 (1), 113-136, 2014
Japan Statistical Society
- Tweet
Details 詳細情報について
-
- CRID
- 1390282679413629952
-
- NII Article ID
- 110009864639
-
- NII Book ID
- AA11989749
-
- ISSN
- 21891478
- 03895602
-
- NDL BIB ID
- 025869737
-
- Text Lang
- ja
-
- Article Type
- journal article
-
- Data Source
-
- JaLC
- NDL Search
- NDL Digital Collections (NII-ELS)
- CiNii Articles
- KAKEN
-
- Abstract License Flag
- Disallowed