書誌事項
- タイトル別名
-
- Test for a Regression Parameter in a Logistic Regression Model under the Small Sample Size and the High Event Occurrence Probability
- ショウヒョウホン カツ オウトウ ヘンスウ ハツゲン カクリツ ガ タカイ バアイ ノ ロジスティック カイキ モデル ニ オケル カイキ パラメータ ノ ケンテイホウ
この論文をさがす
説明
ロジスティック回帰モデルを小標本かつ応答変数発現確率が高い条件下または低い条件下で用いる場合,完全分離または準完全分離が生じていないかを確認することが重要である.完全分離または準完全分離が生じていると,最尤推定量は存在しない.しかし,SAS,S-PLUSやRなどの統計ソフトウェアでは,最尤推定値を求めるため,反復法を実行してしまう.SASやS-PLUSと いった商用ソフトウェアでは,完全分離または準完全分離の可能性や反復法が収束しなかったことを警告表示した上で,反復法の結果を表示する.ところが,Rに標準で提供されているglm 関数は,最尤推定値が求まっていないにもかかわらず,そのことを明確に表示せずに反復法の結果を表示してしまう.その場合,回帰パラメータ推定値の標準誤差が大きくなるので,事後的にも標準誤差から完全分離または準完全分離を確認できることを示した.Firth(1993)は,最尤推定量のバイアスを取り除く方法を提案しており,結果として,完全分離または準完全分 離が生じていても,回帰パラメータの推定が可能となり,回帰パラメータ推定値の標準誤差を用いてWald検定が可能である.しかし,最尤法またはFirth法によるWald検定は,小標本かつ応答変数発現確率が高い(または低い)条件下で用いると,第一種過誤の確率が過度に保守的となる.本論文では,完全分離または準完全分離に近い状態となりやすい,小標本かつ応答変数発現確率が高い条件下において,回帰パラメータの検定をブートストラップ法を用いて検定する方法を提案し,帰無仮説の下で第一種過誤の確率をシミュレーションによりWald検定と比較する.ブートストラップ法を用いた検定は,小標本かつ応答変数発現確率が高い条件下で,保守的となる第一種過誤の確率を改善し,回帰パラメータの検定に有用であることを示した.
収録刊行物
-
- 応用統計学
-
応用統計学 40 (1), 41-51, 2011
応用統計学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390282679418413824
-
- NII論文ID
- 10028209447
-
- NII書誌ID
- AN00330942
-
- ISSN
- 18838081
- 02850370
-
- NDL書誌ID
- 11069604
-
- 本文言語コード
- ja
-
- 資料種別
- journal article
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
- KAKEN
-
- 抄録ライセンスフラグ
- 使用不可