Simultaneous Confidence Intervals Based on Logarithm Transformations in Multi-Sample Models with Bernoulli Responses
-
- Shiraishi Taka-aki
- International College of Arts and Sciences, Yokohama-City University
Bibliographic Information
- Other Title
-
- 多群2項モデルにおける対数変換による同時信頼区間
- タグン 2コウ モデル ニ オケル タイスウ ヘンカン ニ ヨル ドウジ シンライ クカン
Search this article
Description
We consider simultaneous confidence intervals for the differences, ratios, odds ratios among propotions in k binomial populations. Although the simultaneous confidence intervals for all the pairwise differences among the propotions are expressed in Hochberg & Tamhane(1987), the intervals sometimes cause the contradiction including -1 or 1. To solve this contradiction, we construct the simultaneous confidence intervals based on logarithm transformations such as logit. Especially, we derive the upper and lower bounds for the asymptotic distribution of the statistic deriving the simultaneous cofidence intervals for all the pairwise differences. By using the inequalities, it is shown that the conservative is small. For multiple comparisons with a control, the procedures based on the Bonferroni inequality is discussed.
Journal
-
- Ouyou toukeigaku
-
Ouyou toukeigaku 38 (3), 131-150, 2009
Japanese Society of Applied Statistics
- Tweet
Details 詳細情報について
-
- CRID
- 1390282679418980864
-
- NII Article ID
- 10026049065
-
- NII Book ID
- AN00330942
-
- ISSN
- 18838081
- 02850370
-
- NDL BIB ID
- 10540088
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- NDL
- Crossref
- CiNii Articles
- KAKEN
-
- Abstract License Flag
- Disallowed