Antibacterial Activity and Characteristics of Modified Ferrite Powder Coated with a Gemini Pyridinium Salt Molecule

DOI PubMed 被引用文献3件 参考文献25件 オープンアクセス
  • SHIRAI AKIHIRO
    Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima
  • MAEDA TAKUYA
    Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima
  • OHKITA MOTOAKI
    Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima
  • NAGAMUNE HIDEAKI
    Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima
  • KOURAI HIROKI
    Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima

この論文をさがす

説明

This report describes the synthesis of an antibacterial material consisting of a gemini quaternary ammonium salt (gemini-QUAT) immobilized on ferrite powder, and its antibacterial activity. A gemini-QUAT containing two pyridinium residues per molecule, 4, 4'-[1, 3-(2, 2-dihydroxylmethy1-1, 3-dithiapropane)] bis (1-octylpyridinium bromide), was immobilized on ferrite powder by a reaction between the hydroxyl group of the QUAT and trimethoxysilane. Immobilization of the gemini-QUAT on ferrite (F-gemini-QUAT) was confirmed when the dye, bromophenol blue, was released from F-gemini-QUAT-dye after contact between ferrite and the dye. Elemental analysis of the QUAT-ferrite determined the molar amount of QUAT on the ferrite. The antibacterial effect of the ferrite was investigated using a batch treatment system, and this effect was compared with that of another QUAT-ferrite (F-mono-QUAT) binding a mono-QUAT, which possesses one pyridinium residue, prepared by the same immobilization method as F-gemini-QUAT. Results indicated the F-gemini QUAT possessed a higher bactericidal potency and broader antibacterial spectrum compared to F-mono-QUAT. In addition, this study suggested that gemini-QUATs possessed high bactericidal potency without being influenced by immobilization to materials, and the antibacterial activity and characteristics of Fgemini-QUAT could be attributed to the unique structure of the immobilized gemini-QUAT.

収録刊行物

被引用文献 (3)*注記

もっと見る

参考文献 (25)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ