Identification of Cross-Document Sentence Relations from Document Pairs
-
- Tsunoda Takaaki
- Department of Computer Science, Graduate school of SIE, University of Tsukuba
-
- Inui Takashi
- Department of Computer Science, Graduate school of SIE, University of Tsukuba
-
- Yamamoto Mikio
- Department of Computer Science, Graduate school of SIE, University of Tsukuba
Bibliographic Information
- Other Title
-
- 対をなす二文書間における文対応関係の推定
- ツイ オ ナス ニ ブンショ カン ニ オケル ブン タイオウ カンケイ ノ スイテイ
Search this article
Description
We propose a novel task that identifies cross-document sentence relations from document pairs. Although there are numerous studies that focus on finding sentence relations from just one document or conversation, only few studies are proposed for cross-documents. Examples of cross-document sentence relations are question–answer relations, request–response relations, and so on. Finding such relations will lead to many applications since the cross-document sentence relations are useful to explain document-based conversations on a more fine-grained level. For instance, we can extract communications from cross-documents by accumulating sentences having relations. To detect such relations, we regard this task as the classification problem and employ the conditional random fields. In particular, we modify a previous method that focuses on finding relations from conversations using sentence types to our task. Furthermore, we propose a combined model that simultaneously estimates sentence types and relations. The experiments are performed on review and reply on an internet service for hotel reservation, and the results show that our proposed model achieves 46.6% precision and 61.0% recall, which outperforms previous models.
Journal
-
- Journal of Natural Language Processing
-
Journal of Natural Language Processing 22 (1), 27-58, 2015
The Association for Natural Language Processing
- Tweet
Details 詳細情報について
-
- CRID
- 1390282679453452416
-
- NII Article ID
- 130005078085
-
- NII Book ID
- AN10472659
-
- ISSN
- 21858314
- 13407619
-
- NDL BIB ID
- 026244324
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- NDL
- Crossref
- CiNii Articles
-
- Abstract License Flag
- Disallowed