Application of DA-Preconditioned FINN for Electric Power System Fault Detection
-
- Itagaki Tadahiro
- Dept. of Electrical and Electronics Eng., Meiji University
-
- Mori Hiroyuki
- Dept. of Electrical and Electronics Eng., Meiji University
-
- Yamada Takeshi
- Tokyo Electric Power Co., Inc
-
- Urano Shoichi
- Tokyo Electric Power Co., Inc
Bibliographic Information
- Other Title
-
- DA前処理付きFINNによる電力系統事故検出
- DA マエ ショリ ツキ FINN ニ ヨル デンリョク ケイトウ ジコ ケンシュツ
- Application of DA‐preconditioned FINN for electric power system fault detection
Search this article
Description
This paper proposes a hybrid method of Deterministic Annealing (DA) and Fuzzy Inference Neural Network (FINN) for electric power system fault detection. It extracts features of input data with two-staged precondition of Fast Fourier Transform (FFT) and DA. FFT is useful for extracting the features of fault currents while DA plays a key role to classify input data into clusters in a sense of global classification. FINN is a more accurate estimation model than the conventional artificial neural networks (ANNs). The proposed method is successfully applied to data obtained by the Tokyo Electric Power Company (TEPCO) power simulator.
Journal
-
- IEEJ Transactions on Power and Energy
-
IEEJ Transactions on Power and Energy 126 (3), 283-289, 2006
The Institute of Electrical Engineers of Japan
- Tweet
Details 詳細情報について
-
- CRID
- 1390282679579973760
-
- NII Article ID
- 10017276907
- 210000184988
-
- NII Book ID
- AN10136334
-
- ISSN
- 13488147
- 15206416
- 03854213
- 04247760
-
- NDL BIB ID
- 7856897
-
- Text Lang
- ja
-
- Article Type
- journal article
-
- Data Source
-
- JaLC
- NDL Search
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE
-
- Abstract License Flag
- Disallowed