-
- Yuan Caixia
- Faculty of Engineering, The University of Tokushima School of Computer, Beijing University of Posts and Telecommunications
-
- Ren Fuji
- Faculty of Engineering, The University of Tokushima School of Computer, Beijing University of Posts and Telecommunications
-
- Wang Xiaojie
- School of Computer, Beijing University of Posts and Telecommunications
-
- Zhong Yixin
- School of Computer, Beijing University of Posts and Telecommunications
この論文をさがす
説明
This paper presents a work of function labeling for unparsed Chinese text. Unlike other attempts that utilize the full parse trees, we propose an effective way to recognize function labels directly based on lexical information, which is easily scalable for languages that lack sufficient parsing resources. Furthermore, we investigate a general method to iteratively simplify a sentence, thus transferring complicated sentence into structurally simple pieces. By means of a sequence learning model with hidden Markov support vector machine, we achieve the best F-measure of 87.40 on the text from Penn Chinese Treebank resources - a statistically significant improvement over the existing Chinese function labeling systems.
収録刊行物
-
- 電気学会論文誌C(電子・情報・システム部門誌)
-
電気学会論文誌C(電子・情報・システム部門誌) 129 (8), 1593-1600, 2009
一般社団法人 電気学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390282679580530944
-
- NII論文ID
- 10025101803
-
- NII書誌ID
- AN10065950
-
- ISSN
- 13488155
- 03854221
-
- NDL書誌ID
- 10396202
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可