書誌事項
- タイトル別名
-
- Dimensionality Reduction of Vector Space Model for Information Retrieval using Simple Principal Component Analysis
- Simple PCA オ モチイタ ベクトル クウカン ジョウホウ ケンサク モデル ノ ジゲン サクゲン
この論文をさがす
説明
In this paper, we propose to use the Simple Principal Component Analysis (SPCA) for dimensionality reduction of the vector space information retrieval model. The SPCA algorithm is a data-oriented fast method which does not require the computation of the variance-covariance matrix. In SPCA, principal components are estimated iteratively so we also propose a criteria to determine the convergence. The optimum number of iterations for each principal component can be determined using the criteria. Experimentally, we show that the SPCA-based method offers improvement over the conventional SVD-based method despite its small amount of computation. This advantage of SPCA can be attributed to its iterative procedure which is similar to clustering methods such as k-means clustering. On the other hand, the proposed method which orthogonalizes the basis vectors also achieved much higher accuracy than the conventional random projection method based on k-means clustering.
収録刊行物
-
- 電気学会論文誌C(電子・情報・システム部門誌)
-
電気学会論文誌C(電子・情報・システム部門誌) 125 (11), 1773-1779, 2005
一般社団法人 電気学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390282679580608000
-
- NII論文ID
- 130000089848
-
- NII書誌ID
- AN10065950
-
- ISSN
- 13488155
- 03854221
-
- NDL書誌ID
- 7694181
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
- NDL
- Crossref
- CiNii Articles
- KAKEN
-
- 抄録ライセンスフラグ
- 使用不可