A Parallel Graph Planarization Algorithm Using Gradient Ascent Learning of Hopfield Network.
-
- Wang Rong Long
- Faculty of Engineering, Toyama University
-
- Tang Zheng
- Faculty of Engineering, Toyama University
-
- Cao Qi Ping
- Tateyama Systems Institute
書誌事項
- タイトル別名
-
- Parallel Graph Planarization Algorithm Using Gradient Ascent Learning of Hopfield Network
この論文をさがす
説明
This paper proposes a gradient ascent learning algorithm of the Hopfield neural networks for graph planarization. This learning algorithm which is designed to embed a graph on a plane, uses the Hopfield neural network to get a near-maximal planar subgraph, and increase the energy by modifying weights in a gradient ascent direction to help the network escape from the state of the near-maximal planar subgraph to the state of the maximal planar subgraph or better one. The proposed algorithm is applied to several benchmark graphs up to 150 vertices and 1064 edges. The performance of the proposed algorithm is compared with that of Takefuji/Lee’s method. Simulation results show that the proposed algorithm is much better than Takefuji/Lee’s method in terms of the solution quality for every tested graphs.
収録刊行物
-
- 電気学会論文誌C(電子・情報・システム部門誌)
-
電気学会論文誌C(電子・情報・システム部門誌) 123 (3), 414-420, 2003
一般社団法人 電気学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390282679583059840
-
- NII論文ID
- 130000089332
-
- NII書誌ID
- AN10065950
-
- ISSN
- 13488155
- 03854221
-
- NDL書誌ID
- 6480444
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可