- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Selforganization of Neural Networks for Clustering
-
- Maeda Yutaka
- Kansai University
-
- Yotsumoto Yuuichiro
- Kansai University
-
- Kanata Yakichi
- Kansai University
Bibliographic Information
- Other Title
-
- クラスタリングのためのニューラルネットワークの自己組織化
- クラスタリング ノ タメ ノ ニューラル ネットワーク ノ ジコ ソシキカ
- Self‐organization of neural networks for clustering
Search this article
Description
Generally, there are many methods to categorize unknown data in statistics. In many of these methods, we need sample data to determine a border of groups to which these data belong. Moreover, neural networks are also applicable to classify unknown data. Also in leaning process of neural networks, we have to prepare so-called teaching signals, i.e. sample data.<br>In this paper, we propose an empirical scheme to organize neural networks for clustering unknown data which belong to certain two groups. In our scheme, a neural network that satisfies an evaluation function without teaching signals are organized. This evaluation function are determined by a histogram of outputs of the neural network. Generally, neural networks map input data distribution to output one. Maximizing the evaluation function means to separate these two output distributions each other. As an organizing mechanism, genetic algorithm is used because of its convergence ability to global maximum. Some numerical results are presented to confirm a feasibility of the scheme.
Journal
-
- IEEJ Transactions on Electronics, Information and Systems
-
IEEJ Transactions on Electronics, Information and Systems 117 (2), 93-101, 1997
The Institute of Electrical Engineers of Japan
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1390282679584467840
-
- NII Article ID
- 130006843649
- 10002809257
-
- NII Book ID
- AN10065950
-
- ISSN
- 13488155
- 15206416
- 03854221
- 04247760
-
- NDL BIB ID
- 4128392
-
- Data Source
-
- JaLC
- NDL Search
- Crossref
- CiNii Articles
- OpenAIRE
-
- Abstract License Flag
- Disallowed