Application of Large-Scale Database-Based Online Modeling to Plant State Long-Term Estimation
-
- Ogawa Masatoshi
- Waseda University, Information Production Systems Research Center
-
- Ogai Harutoshi
- Graduate school of Information Production Systems, Waseda University
Bibliographic Information
- Other Title
-
- 大規模データに基づく局所モデリングのプラント状態長期予測への応用
- ダイキボ データ ニ モトズク キョクショ モデリング ノ プラント ジョウタイ チョウキ ヨソク エ ノ オウヨウ
Search this article
Description
Recently, attention has been drawn to the local modeling techniques of a new idea called “Just-In-Time (JIT) modeling”. To apply “JIT modeling” to a large amount of database online, “Large-scale database-based Online Modeling (LOM)” has been proposed. LOM is a technique that makes the retrieval of neighboring data more efficient by using both “stepwise selection” and quantization. In order to predict the long-term state of the plant without using future data of manipulated variables, an Extended Sequential Prediction method of LOM (ESP-LOM) has been proposed. In this paper, the LOM and the ESP-LOM are introduced.
Journal
-
- IEEJ Transactions on Electronics, Information and Systems
-
IEEJ Transactions on Electronics, Information and Systems 131 (4), 718-721, 2011
The Institute of Electrical Engineers of Japan
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1390282679585524864
-
- NII Article ID
- 10027979717
-
- NII Book ID
- AN10065950
-
- ISSN
- 13488155
- 03854221
-
- NDL BIB ID
- 11064926
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- NDL Search
- Crossref
- CiNii Articles
- OpenAIRE
-
- Abstract License Flag
- Disallowed