-
- LIU Guoxiang
- Department of Information Science and Intelligent Systems, Faculty of Engineering, the University of Tokushima
-
- OE Shunichiro
- Department of Information Science and Intelligent Systems, Faculty of Engineering, the University of Tokushima
この論文をさがす
説明
This paper presents a Cellular Neural Network (CNN)-based algorithm to segment a texture image by combining some texture segmentation results. Due to the diversity of texture, using multiple segmentation results segmented by different algorithms is necessary for texture image segmentation problems. In this paper, a new method called Composition-Combination is proposed to combine some initial segmentation results. A new kind of CNN called Multi-objective CNN (MOCNN) is developed to improve the combination result of Composition-Combination and produce final segmentation. Different from the standard CNN, each cell of MOCNN has multiple vectors denote different features of cell, and one vector will occupy the cell against other vectors when the network gets to the equilibrium state.
収録刊行物
-
- 画像電子学会誌
-
画像電子学会誌 30 (3), 282-292, 2001
一般社団法人 画像電子学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390282679586910976
-
- NII論文ID
- 130004437235
- 10010070230
-
- NII書誌ID
- AN00041650
-
- ISSN
- 13480316
- 02859831
-
- NDL書誌ID
- 5893129
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDLサーチ
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可