Simulation Study on Dynamics of Resin-Air Interface during Resin-Air Flows between Filaments Using Phase-Field Navier-Stokes Model

  • INOUE Yasuhiro
    京都大学大学院工学研究科機械理工学専攻
  • MATSUMOTO Michito
    三菱電機株式会社先端技術総合研究所
  • HOJO Masaki
    京都大学大学院工学研究科機械理工学専攻
  • TAKADA Naoki
    独立行政法人産業技術総合研究所集積マイクロシステム研究センター
  • ADACHI Taiji
    京都大学大学院工学研究科機械理工学専攻
  • ISHIDA Kazuki
    京都大学大学院工学研究科機械理工学専攻

Bibliographic Information

Other Title
  • Phase‐Field Navier‐Stokesモデルによる繊維間隙スケール樹脂流れにおける気液界面ダイナミクスの検討
  • Phase-Field Navier-Stokesモデルによる繊維間隙スケール樹脂流れにおける気液界面ダイナミクスの検討
  • Phase Field Navier Stokes モデル ニ ヨル センイ カンゲキ スケール ジュシ ナガレ ニ オケル キエキ カイメン ダイナミクス ノ ケントウ

Search this article

Description

To investigate void formation during resin transfer molding (RTM) processes, we developed a numerical code of a multiphase fluid model that employs Navier-Stokes equation including the interfacial tension term and Cahn-Hilliard equation for capturing the resin-air interface. We performed preliminary numerical simulations of microscale resin-air flow around a regular-lattice array of four single filaments. From the analysis, we found that (1) Laplace pressure arisen from the finite curvature of the resin-air interface could drive a capillary-driven flow penetrating into the gap between the two filaments located in longitudinal direction; (2) there was another dual time scale even at the microscale on the determination of flow patters: one was caused by the main flow, and the other by capillary driven transverse flow; (3) voids could be formed when the time scale of the main flow was shorter than that of capillary flow; (4) two modes of void formations were revealed numerically: longitudinal gaps fully capped by the resin-air interface leading to the void formation under a high interfacial tension coefficient; and a small bubble left at the back-step of the filament under a relatively weak interfacial tension coefficient.

Journal

References(41)*help

See more

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top