- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Mechanism-Based Pharmacokinetic–Pharmacodynamic Modeling of Luseogliflozin, a Sodium Glucose Co-transporter 2 Inhibitor, in Japanese Patients with Type 2 Diabetes Mellitus
-
- Samukawa Yoshishige
- Taisho Pharmaceutical Co., Ltd.
-
- Mutoh Masaru
- Taisho Pharmaceutical Co., Ltd.
-
- Chen Shi
- Taisho Pharmaceutical Co., Ltd.
-
- Mizui Nobuo
- Taisho Pharmaceutical Co., Ltd.
Search this article
Description
<p>Luseogliflozin is a selective sodium glucose co-transporter 2 (SGLT2) inhibitor that reduces hyperglycemia in type 2 diabetes mellitus (T2DM) by promoting urinary glucose excretion (UGE). A clinical pharmacology study conducted in Japanese patients with T2DM confirmed dose-dependency of UGE with once-daily administration of luseogliflozin; however, the reason for sustained UGE after plasma luseogliflozin decreased was unclear. To elucidate the effect of inhibition rate constants, Kon and Koff, and to explain the sustained UGE, a pharmacokinetic–pharmacodynamic (PK-PD) model was built based on the mechanisms of glucose filtration in the glomerulus and reabsorption in the renal proximal tubule of kidney as well as the kinetics of competitive inhibition of SGLT1/2 and inhibition rate constants of SGLT2, by using UGE and plasma glucose levels and luseogliflozin concentrations. This acquired population PK-PD model adequately described the sustained UGE and the estimated population means of the inhibition constant for SGLT2 (Ki2) and inhibition-rate constants for SGLT2 (Kon and Koff) were 0.31- and 3.6-fold lower or higher than the in vitro values. Because the dissociation half-time of luseogliflozin from SGLT2 calculated from Koff, 6.81 h, was consistent with the value in vitro, we considered that the sustained UGE could be explained by the long dissociation half-time. Moreover, by calculating the SGLT2 inhibition ratio using the model, we discuss other properties of the UGE time course after luseogliflozin administration.</p>
Journal
-
- Biological and Pharmaceutical Bulletin
-
Biological and Pharmaceutical Bulletin 40 (8), 1207-1218, 2017
The Pharmaceutical Society of Japan
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1390282679607961600
-
- NII Article ID
- 130005876336
-
- NII Book ID
- AA10885497
-
- ISSN
- 13475215
- 09186158
-
- NDL BIB ID
- 028388332
-
- PubMed
- 28769002
-
- Text Lang
- en
-
- Article Type
- journal article
-
- Data Source
-
- JaLC
- NDL Search
- Crossref
- PubMed
- CiNii Articles
- OpenAIRE
-
- Abstract License Flag
- Disallowed