The Characteristics of Hepatic Gsα-cAMP Axis in HSHF Diet-Fed Obese Insulin Resistance Rats and Genetic Diabetic Mice

  • Xue Nina
    Beijing Institute of Pharmacology and Toxicology State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College
  • Wei Chen
    Beijing Institute of Pharmacology and Toxicology
  • Zhang Lihong
    Beijing Institute of Pharmacology and Toxicology
  • Liu Hongying
    Beijing Institute of Pharmacology and Toxicology
  • Wang Xiaojuan
    Department of Pharmacology, School of Stomatology, The Fourth Military Medical University
  • Wang Lili
    Beijing Institute of Pharmacology and Toxicology

この論文をさがす

説明

<p>Stimulatory G protein α-subunit (Gsα) mediated cAMP signal is required for elevated hepatic glucose production (HGP) in diabetic patients. However, it remains obscure of the exact characteristics of hepatic Gsα-cAMP signal axis (including Gsα, glucagon receptor, β2-adrenergic receptor, cAMP, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase) in insulin resistance (IR) and type 2 diabetes mellitus (T2DM). In current study, we investigated the changing characteristics of hepatic Gsα-cAMP signal axis and blood glucose in high-sugar-high-fat (HSHF)-diet-induced IR Wistar rats and db/db diabetic mice. As expected, the HSHF-diet rats were characterized by hyperinsulinemia, hyperglycemia and impaired glucose tolerance. According to a threshold (1.7) of homeostasis model assessment ratio (HOMA-R), the process of IR in HSHF-diet rats could be divided into slight and high IR stages, with the week-23 as the cut-off point. In early slight IR stage, key molecules expressions of hepatic Gsα-cAMP signal axis in HSHF-diet rats were up-regulated with significantly elevated fasting blood glucose (FBG) from 18 to 23 weeks. Unexpectedly, in high IR stage, hepatic Gsα-cAMP signal axis was recovered comparatively to that of normal chow-diet rats, and no significant differences in FBG levels were found. However, in diabetic db/db mice, up-regulation of hepatic Gsα-cAMP signal axis was responsible for its severely increased fasting hyperglycaemia. Our data revealed a positive correlation between hepatic Gsα-cAMP signal axis and FBG in slight IR stage of HSHF-diet rats and diabetic db/db mice. The current finding thus suggested hepatic Gsα-cAMP signal axis plays a central role in regulating of FBG during the developing and development of T2DM.</p>

収録刊行物

参考文献 (28)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ