Developing Population Pharmacokinetic Parameters for High-Dose Methotrexate Therapy: Implication of Correlations among Developed Parameters for Individual Parameter Estimation Using the Bayesian Least-Squares Method
-
- Watanabe Masahiro
- Department of Pharmacy, Kagawa University Hospital
-
- Fukuoka Noriyasu
- Department of Pharmacy, Kagawa University Hospital
-
- Takeuchi Toshiki
- Institute of Technology and Science, The University of Tokushima
-
- Yamaguchi Kazunori
- Department of Pharmacy, Kagawa University Hospital
-
- Motoki Takahiro
- Department of Pharmacy, Kagawa University Hospital
-
- Tanaka Hiroaki
- Department of Pharmacy, Kagawa University Hospital
-
- Kosaka Shinji
- Department of Pharmacy, Kagawa University Hospital
-
- Houchi Hitoshi
- Department of Pharmacy, Kagawa University Hospital
この論文をさがす
説明
Bayesian estimation enables the individual pharmacokinetic parameters of the medication administrated to be estimated using only a few blood concentrations. Due to wide inter-individual variability in the pharmacokinetics of methotrexate (MTX), the concentration of MTX needs to be frequently determined during high-dose MTX therapy in order to prevent toxic adverse events. To apply the benefits of Bayesian estimation to cases treated with this therapy, we attempted to develop an estimation method using the Bayesian least-squares method, which is commonly used for therapeutic monitoring in a clinical setting. Because this method hypothesizes independency among population pharmacokinetic parameters, we focused on correlations among population pharmacokinetic parameters used to estimate individual parameters. A two-compartment model adequately described the observed concentration of MTX. The individual pharmacokinetic parameters of MTX were estimated in 57 cases using the maximum likelihood method. Among the available parameters accounting for a 2-compartment model, V1, k10, k12, and k21 were found to be the combination showing the weakest correlations, which indicated that this combination was best suited to the Bayesian least-squares method. Using this combination of population pharmacokinetic parameters, Bayesian estimation provided an accurate estimation of individual parameters. In addition, we demonstrated that the degree of correlation among population pharmacokinetic parameters used in the estimation affected the precision of the estimates. This result highlights the necessity of assessing correlations among the population pharmacokinetic parameters used in the Bayesian least-squares method.
収録刊行物
-
- Biological & Pharmaceutical Bulletin
-
Biological & Pharmaceutical Bulletin 37 (6), 916-921, 2014
公益社団法人 日本薬学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390282679609388672
-
- NII論文ID
- 130004147335
-
- NII書誌ID
- AA10885497
-
- COI
- 1:STN:280:DC%2BC2cjot1GhsA%3D%3D
-
- ISSN
- 13475215
- 09186158
-
- NDL書誌ID
- 025478818
-
- PubMed
- 24882404
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- PubMed
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可