Training Method for Smart Grid Power Limitation Prediction Model of Building Air-conditioners with FastADR Signal Modulation during Normal Operation
-
- Ninagawa Chuzo
- Department of Electrical and Electronic Engineering, Gifu University
-
- Aoki Yoshifumi
- Department of Electrical and Electronic Engineering, Gifu University
-
- Nakamura Atsushi
- Department of Electrical and Electronic Engineering, Gifu University
-
- Morikawa Junji
- Mitsubishi Heavy Industries Thermal Systems, Ltd.
-
- Kondo Seiji
- Mitsubishi Heavy Industries Thermal Systems, Ltd.
-
- Inaba Takashi
- Mitsubishi Heavy Industries Thermal Systems, Ltd.
Bibliographic Information
- Other Title
-
- ビル空調設備スマートグリッド電力抑制予測モデルの平常運転FastADR信号モジュレーション訓練法
- ビル クウチョウ セツビ スマートグリッド デンリョク ヨクセイ ヨソク モデル ノ ヘイジョウ ウンテン FastADR シンゴウ モジュレーション クンレンホウ
Search this article
Description
<p>Fast Automated Demand Response (FastADR), which controls the power consumption of customers' loads, is one of the future smart grid technologies. In this paper, a neural network modeling of the FastADR response property for the power consumption of building air-conditioners is studied. We propose an efficient training data collection method with operation condition zoning using the FastADR-like signal modulation during normal air-conditioning operation.</p>
Journal
-
- IEEJ Transactions on Industry Applications
-
IEEJ Transactions on Industry Applications 138 (3), 199-205, 2018
The Institute of Electrical Engineers of Japan
- Tweet
Details 詳細情報について
-
- CRID
- 1390282679636541696
-
- NII Article ID
- 130006407511
-
- NII Book ID
- AN10012320
-
- ISSN
- 13488163
- 09136339
-
- NDL BIB ID
- 028903479
-
- Text Lang
- ja
-
- Data Source
-
- JaLC
- NDL
- Crossref
- CiNii Articles
-
- Abstract License Flag
- Disallowed