Numerical Simulation for Gas-Liquid Two-Phase Free Turbulent Flow Based on Vortex in Cell Method

Search this article

Abstract

This paper proposes a two-dimensional vortex method, based on Vortex in Cell method, for gas-liquid two-phase free turbulent flow. The behavior of vortex element and the bubble motion are calculated through the Lagrangian approach, while the change in the vorticity due to the bubble is analyzed in the computational grids resolving the flow field. Therefore, the numerical procedure corresponds to the Lagrangian-Eulerian method. The present method is applied to simulate the air-water bubbly flow around a square-section cylinder. The simulation demonstrates that the bubble entrainment into the Karman vortex and the resultant reduction for the strength of vortex are successfully captured by the method. It is also confirmed that the vortex shedding frequency and the pressure distribution on the cylinder are favorably compared with the measured results.

Journal

Citations (1)*help

See more

References(46)*help

See more

Details 詳細情報について

Report a problem

Back to top