-
- Araki Huzihiro
- Research Institute for Mathematical Sciences, Kyoto University
-
- Jurzak Jean Paul
- Labaratoire de Physique Mathématique, Faculté des Science Mirande
この論文をさがす
説明
A *-algebra \mathfrak{A} of linear operators with a common invariant dense domain \mathscr{D} in a Hilbert space is studied relative to the order structure given by the cone \mathfrak{A}+ of positive elements of \mathfrak{A} (in the sense of positive sesquilinear form on \mathscr{D}) and the ρ-topology defined as an inductive limit of the order norm ρA (of the subspace \mathfrak{A}A with A as its order unit) with A∈\mathfrak{A}+. In particular, for those \mathfrak{A} with a countable cofinal sequence Ai in \mathfrak{A}+ such that Ai−1∈\mathfrak{A}, the ρ-topology is proved to be order convex, any positive elements in the predual is shown to be a countable sum of vector states, and the bicommutant within the set B(\mathscr{D}, \mathscr{D}) of continuous sesquilinear forms on \mathscr{D} is shown to be the ultraweak closure of \mathfrak{A}. The structure of the commutant and the bicommutant are explicitly given in terms of their bounded operator elements which are von Neumann algebras and the commutant of each other.
収録刊行物
-
- Publications of the Research Institute for Mathematical Sciences
-
Publications of the Research Institute for Mathematical Sciences 18 (3), 1013-1044, 1982
国立大学法人 京都大学数理解析研究所
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390282679933267712
-
- NII論文ID
- 110004705487
-
- NII書誌ID
- AA00796798
-
- ISSN
- 16634926
- 00345318
-
- MRID
- 688942
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可