認知距離学習による問題解決器の実行時探索削減の評価と学習プロセスの解析

  • 山川 宏
    新情報処理開発機構自律学習機能富士通研究室
  • 宮本 裕司
    (株)富士通ビー・エス・シー
  • 馬場 孝之
    新情報処理開発機構自律学習機能富士通研究室
  • 岡田 浩之
    新情報処理開発機構自律学習機能富士通研究室

書誌事項

タイトル別名
  • Cognitive Distance Learning Problem Solver Reduces Search Cost through Learning Processes
  • ニンチ キョリ ガクシュウ ニ ヨル モンダイ カイケツキ ノ ジッコウジ タンサク サクゲン ノ ヒョウカ ト ガクシュウ プロセス ノ カイセキ

この論文をさがす

説明

Our proposed cognitive distance learning problem solver generates sequence of actions from initial state to goal states in problem state space. This problem solver learns cognitive distance (path cost) of arbitrary combination of two states. Action generation at each state is selection of next state that has minimum cognitive distance to the goal, like Q-learning agent. In this paper, first, we show that our proposed method reduces search cost than conventional search method by analytical simulation in spherical state space. Second, we show that an average search cost is more reduced more the prior learning term is long and our problem solver is familiar to the environment, by a computer simulation in a tile world state space. Third, we showed that proposed problem solver is superior to the reinforcement learning techniques when goal is changed by a computer simulation. Forth, we found that our simulation result consist with psychological experimental results.

収録刊行物

被引用文献 (1)*注記

もっと見る

参考文献 (43)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ