-
- 永田 裕一
- 北陸先端科学技術大学院大学 情報科学研究科
書誌事項
- タイトル別名
-
- New Approach of a Genetic Algorithm for TSP Using the Evaluation Function Considering Local Diversity Loss
- キョクショテキ タヨウセイ ノ ソンシツ オ コウリョ シタ ヒョウカ カンスウ オ モチイタ GA ノ TSP エ ノ テキヨウ
この論文をさがす
説明
The edge assembly crossover (EAX) is considered the best available crossover for traveling salesman problems (TSPs). In this paper, a modified EAX algorithm is proposed. The key idea is to maintain population diversity by eliminating any exchanges of edges by the crossover that does not contribute to an improved evaluation value. For this, a new evaluation function is designed considering local diversity loss of the population. The proposed method is applied to several benchmark instances with up to 4461 cities. Experimental results show that the proposed method works better than other genetic algorithms using other improvements of the EAX. The proposed method can reach optimal solutions for most benchmark instances with up to 2392 cities with probabilities higher than 90%. For an instance called fnl4461, this method can reach an optimal solution with probability 60% when the population size is set to 300 -- an extremely small population compared to that needed in previous studies.
収録刊行物
-
- 人工知能学会論文誌
-
人工知能学会論文誌 21 195-204, 2006
一般社団法人 人工知能学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390282680083497216
-
- NII論文ID
- 10022006211
-
- NII書誌ID
- AA11579226
-
- ISSN
- 13468030
- 13460714
-
- NDL書誌ID
- 8686441
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
- IRDB
- NDL
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可