書誌事項
- タイトル別名
-
- Analysis of Long-term Market Trend by Text-Mining of News Articles
説明
In this study, we developed a new method of the long-term market analysis by using text-mining of news articles. Using our method, we conducted extrapolation tests to predict stock price averages by 19 industry and two market averages, TOPIX and Nikkei225 for about 10 years. As a result, 8 sectors in 21 sectors (about 40%) showed over about 60% accuracy, and 15 sectors in 21 sectors (over 70%) showed over about 55% accuracy. We also developed a web system of financial text-mining based on our method for financial professionals.
収録刊行物
-
- 人工知能学会論文誌
-
人工知能学会論文誌 28 (3), 291-296, 2013
一般社団法人 人工知能学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390282680085059968
-
- NII論文ID
- 130003362333
-
- BIBCODE
- 2013TJSAI..28..291K
-
- ISSN
- 13468030
- 13460714
-
- 本文言語コード
- ja
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可