A Discrete Analogue of Periodic Delta Bose Gas and Affine Hecke Algebra
-
- Takeyama Yoshihiro
- University of Tsukuba
説明
We consider an eigenvalue problem for a discrete analogue of the Hamiltonian of the non-ideal Bose gas with delta-potentials on a circle. It is a two-parameter deformation of the discrete Hamiltonian for joint moments of the partition function of the O'Connell-Yor semi-discrete polymer. We construct the propagation operator by using integral-reflection operators, which give a representation of the affine Hecke algebra. We also construct eigenfunctions by means of the Bethe ansatz method. In the case where one parameter of our Hamiltonian is equal to zero, the eigenfunctions are given by specializations of the Hall-Littlewood polynomials.
収録刊行物
-
- Funkcialaj Ekvacioj
-
Funkcialaj Ekvacioj 57 (1), 107-118, 2014
日本数学会函数方程式論分科会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390282680088444672
-
- NII論文ID
- 130003391676
-
- ISSN
- 05328721
- http://id.crossref.org/issn/05328721
-
- 本文言語コード
- en
-
- 資料種別
- journal article
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
- KAKEN
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可