A Discrete Analogue of Periodic Delta Bose Gas and Affine Hecke Algebra

説明

We consider an eigenvalue problem for a discrete analogue of the Hamiltonian of the non-ideal Bose gas with delta-potentials on a circle. It is a two-parameter deformation of the discrete Hamiltonian for joint moments of the partition function of the O'Connell-Yor semi-discrete polymer. We construct the propagation operator by using integral-reflection operators, which give a representation of the affine Hecke algebra. We also construct eigenfunctions by means of the Bethe ansatz method. In the case where one parameter of our Hamiltonian is equal to zero, the eigenfunctions are given by specializations of the Hall-Littlewood polynomials.

収録刊行物

  • Funkcialaj Ekvacioj

    Funkcialaj Ekvacioj 57 (1), 107-118, 2014

    日本数学会函数方程式論分科会

被引用文献 (3)*注記

もっと見る

参考文献 (15)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

  • CRID
    1390282680088444672
  • NII論文ID
    130003391676
  • DOI
    10.1619/fesi.57.107
    10.48550/arxiv.1209.2758
  • ISSN
    05328721
    http://id.crossref.org/issn/05328721
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • JaLC
    • Crossref
    • CiNii Articles
    • KAKEN
    • OpenAIRE
  • 抄録ライセンスフラグ
    使用不可

問題の指摘

ページトップへ