EXAMINING BRAND-SWITCHING BEHAVIOR USING LATENT CLASS DYNAMIC MULTINOMIAL PROBIT MODELS WITH RANDOM EFFECTS
-
- Miyazaki Kei
- Kansai University
説明
Recent studies that analyze scanner panel data often use hierarchical Bayes modeling with dynamic structures and random effects to model consumers' heterogeneity. In this study, we propose a hybrid version of a hierarchical Bayes model with dynamic structures in which both latent classes and random effects are assumed. The proposed model explains consumer heterogeneity as it relates to brand-switching behavior by using latent classes and random effects. This makes it possible to estimate brand-switching behavior accurately by explaining within-class heterogeneity in coefficients with random effects. The proposed method is then applied to an Information Resources Inc. marketing data set with noteworthy results.
収録刊行物
-
- Behaviormetrika
-
Behaviormetrika 42 (1), 1-18, 2015
日本行動計量学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390282680090371200
-
- NII論文ID
- 130005066298
-
- ISSN
- 13496964
- 03857417
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- Crossref
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可