On the theory of multilinear Littlewood–Paley <i>g</i>-function
-
- Xue Qingying
- School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education
-
- Peng Xiuxiang
- School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education
-
- Yabuta Kôzô
- Research Center for Mathematical Sciences, Kwansei Gakuin University
Bibliographic Information
- Other Title
-
- On the theory of multilinear Littlewood-Paley g-function
Search this article
Description
Let m ≥ 2 and define the multilinear Littlewood–Paley g-function by<img align="middle" src="./Graphics/abst-535.jpg"/>In this paper, we establish the strong Lp1(w1) × ⋯ × Lpm(wm) to Lp(ν\vec{ω}) boundedness and weak type Lp1(w1) × ⋯ × Lpm(wm) to Lp,∞(ν\vec{ω}) estimate for the multilinear g-function. The weighted strong and end-point estimates for the iterated commutators of g-function are also given. Here ν\vec{ω} = ∏mi=1ωp/pii and each wi is a nonnegative function on ℝn.
Journal
-
- Journal of the Mathematical Society of Japan
-
Journal of the Mathematical Society of Japan 67 (2), 535-559, 2015
The Mathematical Society of Japan
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1390282680091083392
-
- NII Article ID
- 130005069898
-
- NII Book ID
- AA0070177X
-
- ISSN
- 18811167
- 18812333
- 00255645
-
- NDL BIB ID
- 026336016
-
- Text Lang
- en
-
- Article Type
- journal article
-
- Data Source
-
- JaLC
- NDL Search
- Crossref
- CiNii Articles
- KAKEN
-
- Abstract License Flag
- Disallowed