Some functional equations and Picard constants of algebroid surfaces Dedicated to Professor Mitsuru Nakai on his 60th birthday

DOI 機関リポジトリ 機関リポジトリ 機関リポジトリ (HANDLE) 機関リポジトリ (HANDLE) ほか1件をすべて表示 一部だけ表示 参考文献14件 オープンアクセス

書誌事項

タイトル別名
  • Some functional equations and Picard constants of algebroid surfaces
  • Some functional equations and Picard co

この論文をさがす

説明

The authors study the functional equation $(\ast) \sum^m_{µ=0}a_µ(z)e^{µH(z)}=f(z)\sum^n_{ u=0}b_ u(z)e^{ u L(z)}$ and give an application. Let $R$ be a Riemann surface, $M(R)$ the family of non-constant meromorphic functions on $R, P(f)$ the number of values which are not taken by an element $f$ of $M(R)$. The Picard constant $P(R)$ of $R$ is defined by $P(R)=\sup(P(f)| f\in M(R)). P(R)$ is conformally invariant, $P(R)\geq2$ if $R$ is open, and $P(R)\leq2n$ if $R$ is an $n$-sheeted algebroid surface. They apply a result on $(\ast)$ to obtain a result on $P(R)$ for a four-sheeted algebroid surface $R$, which is an improvement of a result obtained earlier by M. Ozawa and K. Sawada [Kodai Math. J. 17 (1994), no. 1, 101--124; MR1262956 (95g:30039); Kodai Math. J. 18 (1995), no. 2, 199--233; MR1346901 (96m:30043)].

収録刊行物

参考文献 (14)*注記

もっと見る

キーワード

詳細情報 詳細情報について

問題の指摘

ページトップへ