-
- Goto Shiro
- Department of Mathematics, School of Science and Technology, Meiji University
-
- Hayasaka Futoshi
- Department of Mathematics, School of Science and Technology, Meiji University
-
- Takahashi Ryo
- Department of Mathematical Sciences, Faculty of Science, Shinshu University
この論文をさがす
説明
Let R be a Noetherian local ring with the maximal ideal \mathfrak{m} and dim R = 1. In this paper, we shall prove that the module Ext1R (R/Q, R) does not vanish for every parameter ideal Q in R, if the embedding dimension \mathrm{v}(R) of R is at most 4 and the ideal \mathfrak{m}2 kills the 0^{\underline{th}} local cohomology module H\mathfrak{m}0(R). The assertion is no longer true unless v(R) ≤ 4. Counterexamples are given. We shall also discuss the relation between our counterexamples and a problem on modules of finite G-dimension.
収録刊行物
-
- Journal of the Mathematical Society of Japan
-
Journal of the Mathematical Society of Japan 60 (4), 1045-1064, 2008
一般社団法人 日本数学会
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1390282680091423104
-
- NII論文ID
- 10024905254
-
- NII書誌ID
- AA0070177X
-
- ISSN
- 18811167
- 18812333
- 00255645
-
- NDL書誌ID
- 9691644
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可