THE RANGE AND PSEUDO-INVERSE OF A PRODUCT

  • SHIJIE LU
    DEPARTMENT OF MATHEMATICS ZHEJIANG UNIVERSITY HANGZHOU PEOPLE'S REPUBLIC OF CHINA

この論文をさがす

説明

By definition the cosine of the angle between the two subspaces M and N is { \left| {u, v} \ ight|:u \in M, v \in N, \left// u \ ight// = 1 = \left// v \ ight//} . For operators A and B with closed range in Hilbert spaces, AB has closed range if and only if the angle between ker A and B({(\ker AB)^ ⊥ }) is positive. Moreover, if we denote by {A^Ψ } the pseudo-inverse of A, then {(AB)^Ψ } = {B^Ψ }{A^Ψ } if and only if B({(\ker AB)^ ⊥ }) \subset {(\ker A)^ ⊥ } and {A^ * }({(\ker {B^ * }{A^ * })^ ⊥ }) \subset {(\ker {B^ * })^ ⊥ }.

収録刊行物

参考文献 (3)*注記

もっと見る

キーワード

詳細情報 詳細情報について

  • CRID
    1390282680091478912
  • NII論文ID
    110000026408
  • NII書誌ID
    AA00863953
  • DOI
    10.2748/tmj/1178228371
  • ISSN
    2186585X
    00408735
  • MRID
    876455
  • 本文言語コード
    en
  • データソース種別
    • JaLC
    • Crossref
    • CiNii Articles
  • 抄録ライセンスフラグ
    使用不可

問題の指摘

ページトップへ